Популярные личности

Мелвин Калвин

Американский биохимик
На фото Мелвин Калвин
Категория:
Дата рождения:
1911-04-08
Место рождения:
Сент-Поль, Миннесота, США
Дата смерти:
1977-01-08
Место смерти:
Беркли, Калифорния, США
Гражданство:
США
Читать новости про человека
Биография

Биография

Американский химик-органик Мелвин Калвин (Кэлвин) родился в Сент-Поле (штат Миннесота), в семье Розы И. (Хервиц) Калвин и Элиаса Калвина. Его родители в свое время иммигрировали в США из России. Еще ребенком К. проявлял большую любознательность и любовь к учебе, а к одиннадцатому классу решил стать химиком. Семья переехала в Детройт (штат Мичиган), где К. учился в местной средней школе. Учитель физики К. высказывал опасение, что «его ученик никогда не станет ученым»: очень уж он поспешно делал выводы. Но К., выиграв стипендию для обучения в Мичиганском колледже горного дела и технологии, в 1931 г. стал бакалавром естественных наук. Четыре года спустя за диссертацию на тему о сродстве к электрону йода и брома Миннесотский университет присудил ему докторскую степень по химии.


Поддержка Фонда Рокфеллера позволила К. после защиты докторской диссертации проводить исследования в Англии, в Манчестерском университете под руководством профессора физической химии Майкла Полани, отца Джона Ч. Полани. Здесь К. изучал парамагнитную конверсию водорода и каталитическую активность металлопорфиринов – сложных органических молекул, содержащих атомы металла, производными которых являются гемоглобин и хлорофилл. Возвратившись в 1937 г. в США, К. был назначен преподавателем химии Калифорнийского университета в Беркли, где занимался исследованием электронной природы окрашенных органических соединений под руководством химика Гилберта Н. Льюиса.

Во время второй мировой войны К. с 1941 по 1944 г. работал в Научно-исследовательском совете национальной обороны, а в 1944...1945 гг. принимал участие в Манхэттенском проекте. В этот период ученый разработал метод получения чистого кислорода из атмосферы для применения его в промышленном производстве, например при осуществлении сварки в тех местах, где невозможно достать кислород.

В 1945 г. К. вернулся в Беркли адъюнкт-профессором, а два года спустя стал полным профессором. В 1946 г. он был назначен руководителем группы биоорганической химии в радиационной лаборатории Лоуренса и занимал этот пост до 1980 г. Его научные интересы лежали в области фотосинтеза – сложного процесса, в ходе которого зеленые растения используют энергию солнечных лучей, вырабатывая углеводы и кислород из углекислого газа и воды. Несмотря на то что условия, необходимые для фотосинтеза, а также его конечные продукты были известны со времени их открытия в 1772 г. Джозефом Пристли, промежуточные реакции, которые осуществляются в ходе этого процесса, оставались неизвестными.

В распоряжении К. было два новых аналитических метода. Первый состоял в применении углерода-14, радиоактивного изотопа углерода, который, будучи ассимилирован растениями, мог быть легко обнаружен в органических соединениях. К. поместил диоксид углерода, содержащий углерод-14, в круглый сосуд из тонкого стекла (названный леденцом из-за его формы), который был наполнен зелеными морскими водорослями Chlorella pirenoidosa, находящимися во взвешенном состоянии. Сосуд был освещен, поэтому водоросли и меченые атомы диоксида углерода, взаимодействуя, образовывали соединения, участвующие в фотосинтезе.

Для идентификации меченых атомов К. применил другой метод – бумажной хроматографии. При этом методе, разработанном Арчером Мартином и Ричардом Сингом, разделение компонентов в смеси происходит благодаря тому, что они по-разному перемещаются растворителями вдоль полоски фильтровальной бумаги. Каждый компонент образует пятно на соответствующем месте этой полоски, которое затем можно сравнить с распределением пятен, оставленных известными химическими реагентами. Чтобы установить пятна, содержащие меченые атомы углерода, хроматография применяется наряду с рентгеновской пленкой, которая темнеет в присутствии любого радиоактивного излучения. «К сожалению, на этой бумаге, как правило, не отпечатываются названия соединений, – вспоминал позднее К., – и наша первоначальная утомительная работа в течение 10 лет заключалась в том, чтобы тщательно метить эти потемневшие места на пленке».

Благодаря этой работе К. и его помощники установили, что диоксид углерода сначала реагирует с дифосфатом рибулозы (соединением, молекула которого содержит 5 атомов углерода) с образованием фосфоглицериновой кислоты, которая в процессе серии реакций превращается в фруктозо-6-фосфат и глюкозо-6-фосфат. Стадии превращения диоксида углерода в углеводы, названные циклом Калвина, осуществляются в хлоропластах – высокоорганизованных внутриклеточных органоидах растительных клеток. Цикл Калвина, в который входят «темные» реакции фотосинтеза, осуществляется благодаря таким высокоэнергетическим соединениям, как аденозинтрифосфорная кислота и восстановленный фосфат-никотин-амидаденин-динуклеотид, генерируемым в «светлых» реакциях, в ходе которых свет поглощается молекулами хлорофилла. С помощью радиоактивных изотопов К. также проследил путь кислорода в реакциях фотосинтеза.

В 1961 г. К. была присуждена Нобелевская премия по химии «за исследование усвоения двуокиси углерода растениями». Хотя К. получил Нобелевскую премию по химии, его работа отличается взаимодействием научных дисциплин в подходе к химии, биологии и физике, и он подчеркнул важность этого аспекта в своей Нобелевской лекции: «Химическая биодинамика, подразумевающая объединение многих научных дисциплин, еще сыграет роль в решении этой проблемы [проблемы, объясняющей механизм участия хлорофилла в преобразовании энергии света] так же, как в свое время она способствовала прояснению углеродного цикла. Можно ожидать, что она будет занимать все более значительное место в понимании динамики развития живых организмов на молекулярном уровне».

В 1963 г. К. был назначен профессором молекулярной биологии Калифорнийского университета в Беркли, а через 8 лет – профессором химии. С 1960 по 1980 г. он работал заведующим лабораторией химической биодинамики, где проводились научные исследования по таким темам, как фотосинтез и превращение солнечной энергии, радиационная химия, химия мозга, молекулярные основы знаний и происхождение жизни на Земле. С помощью циклотрона К. облучал атомы диоксида углерода и водорода, которые превращались в молекулы аминокислот и аденина; последний является составной частью одной из нуклеиновых кислот. Обнаружив меченые атомы органических веществ в метеоритах, он предположил возможность существования жизни где-то еще в Солнечной системе.

Ученый принимает участие в работе многих национальных и международных комитетов, которые занимаются проблемами мирного использования атомной энергии, молекулярной биопсии, политикой в области науки и национальной политики, а также биокосмонавтикой. Он работал консультантом в Национальном управлении по аэронавтике и использованию космического пространства.

В 1942 г. К. женился на Мари Женевьеве Жемтегаард, сотруднице патронажной организации. У супругов две дочери и сын. К. – обладатель многих почетных степеней. Он награжден медалью Дэви Лондонского королевского общества (1964), медалью Пристли Американского химического общества (1978), золотой медалью Американского института химиков (1978) и премией Оуэспера Американского химического общества (1981). К. – член Лондонского королевского общества, Нидерландской академии наук, Американского философского общества, американской Национальной академии наук и Американского химического общества (президентом которого он был в 1971 г.).



Поделиться: