Американский физик Марри Гелл-Манн родился в Нью-Йорке и был младшим сыном эмигрантов из Австрии Артура и Полин (Райхштайн) Гелл-Манн. В возрасте пятнадцати лет Г.-М. поступил в Йельский университет, который закончил в 1948 г. с дипломом бакалавра наук. Последующие годы он провел в аспирантуре Массачусетского технологического института, в котором в 1951 г. получил докторскую степень по физике. После годичного пребывания в Принстонском институте фундаментальных исследований (штат Нью-Джерси) Г.-М. начал работать в Чикагском университете с Энрико Ферми, сначала преподавателем (1952...1953), затем ассистент-профессором (1953...1954) и адъюнкт-профессором (1954...1955).
В 50-е гг. физика элементарных частиц (основная область научных интересов Г.-М.) находилась в стадии формирования. Основными средствами экспериментальных исследований в этом отделе физики были ускорители, «выстреливавшие» пучок частиц в неподвижную мишень: при столкновении налетающих частиц с мишень
ю рождались новые частицы. С помощью ускорителей экспериментаторам удалось получить несколько новых типов элементарных частиц, помимо уже известных протонов, нейтронов и электронов. Физики-теоретики пытались найти некоторую схему, которая позволила бы классифицировать все новые частицы.
Учеными б
ыли обнаружены частицы с необычным (странным) поведением. Скорость рождения таких частиц в результате некоторых столкновений свидетельствовала о том, что их поведение определяется сильным взаимодействием, для которого характерно быстродействие. Сильное, слабое, электромагнитное и гравитационное взаи
модействия образуют четыре фундаментальных взаимодействия, лежащих в основе всех явлений. Вместе с тем странные частицы распадались необычно долго, что было бы невозможно, если бы их поведение определялось сильным взаимодействием. Скорость распада странных частиц, по-видимому, указывала на то, что э
тот процесс определяется гораздо более слабым взаимодействием.
На решении этой труднейшей задачи и сосредоточил свое внимание Г.-М. Исходным пунктом своих построений он избрал понятие, известное под названием зарядовой независимости. Суть его состоит в определенной группировке частиц, подчеркиваю
щей их сходство. Например, несмотря на то что протон и нейтрон отличаются электрическим зарядом (протон имеет заряд +1, нейтрон – 0), во всех остальных отношениях они тождественны. Следовательно, их можно считать двумя разновидностями одного и того же типа частиц, называемых нуклонами, имеющих средн
ий заряд, или центр заряда, равный 1/2. Принято говорить, что протон и нейтрон образуют дублет. Другие частицы также могут быть включены в аналогичные дублеты или в группы из трех частиц, называемые триплетами, или в «группы», состоящие всего лишь из одной частицы, – синглеты. Общее название группы,
состоящей из любого числа частиц, – мультиплет.
Все попытки сгруппировать странные частицы аналогичным образом не увенчались успехом. Разрабатывая свою схему их группировки, Г.-М. обнаружил, что средний заряд их мультиплетов отличается от 1/2 (среднего заряда нуклонов). Он пришел к выводу, что э
то отличие может быть фундаментальным свойством странных частиц, и предложил ввести новое квантовое свойство, названное странностью. По причинам алгебраического характера странность частицы равна удвоенной разности между средним зарядом мультиплета и средним зарядом нуклонов +1/2. Г.-М. показал, что
странность сохраняется во всех реакциях, в которых участвует сильное взаимодействие. Иначе говоря, суммарная странность всех частиц до сильного взаимодействия должна быть абсолютно равна суммарной странности всех частиц после взаимодействия. Сохранение странности объясняет, почему распад таких част
иц не может определяться сильным взаимодействием. При столкновении некоторых других, не странных, частиц странные частицы рождаются парами. При этом странность одной частицы компенсирует странность другой. Например, если одна частица в паре имеет странность +1, то странность другой равна –1. Именно
поэтому суммарная странность не странных частиц как до, так и после столкновения равна 0. После рождения странные частицы разлетаются. Изолированная странная частица не может распадаться вследствие сильного взаимодействия, если продуктами ее распада должны быть частицы с нулевой странностью, так как
такой распад нарушал бы сохранение странности. Г.-М. показал, что электромагнитное взаимодействие (характерное время действия которого заключено между временами сильного и слабого взаимодействий) также сохраняет странность. Таким образом, странные частицы, родившись, выживают вплоть до распада, опр
еделяемого слабым взаимодействием, которое не сохраняет странность. Свои идеи Г.-М. опубликовал в 1953 г.
В 1955 г. Г.-М. стал адъюнкт-профессором факультета Калифорнийского технологического института; в следующем году он уже полный профессор, а в 1967 г. занял почетный профессорский пост, учрежд
енный в память Роберта Э. Милликена.
В 1961 г. Г.-М. обнаружил, что система мультиплетов, предложенная им для описания странных частиц, может быть включена в гораздо более общую теоретическую схему, позволившую ему сгруппировать все сильно взаимодействующие частицы в «семейства». Свою схему Г.-М.
назвал восьмеричным путем (по аналогии с восемью атрибутами праведного жития в буддизме), так как некоторые частицы были сгруппированы в семейства, насчитывающие по восемь членов. Предложенная им схема классификации частиц известна также под названием SU (3)-симметрии. Вскоре независимо от Г.-М. ан
алогичную классификацию частиц предложил израильский физик Ювал Нееман.
Восьмеричный путь Г.-М. часто сравнивают с периодической системой химических элементов Д.И. Менделеева, в которой химические элементы с аналогичными свойствами сгруппированы в семейства. Как и Менделеев, который оставил в пер
иодической таблице некоторые пустые клетки, предсказав свойства неизвестных еще элементов, Г.-М. оставил вакантные места в некоторых семействах частиц, предположив, какие частицы с правильным набором свойств должны заполнить «пустоты». Теория Г.-М. получила частичное подтверждение в 1964 г., после о
ткрытия так называемого омега-минус-шперона, существование которого было им предсказано.
В 1963 г., находясь в качестве приглашенного профессора в Массачусетском технологическом институте, Г.-М. обнаружил, что детальная структура восьмеричного пути может быть объяснена, если предположить, что каж
дая частица, участвующая в сильном взаимодействии, состоит из триплета частиц с зарядом, составляющим дробную часть электрического заряда протона. К такому же открытию пришел и американский физик Джордж Цвейг, работавший в Европейском центре ядерных исследований. Г.-М. назвал частицы с дробным заряд
ом кварками, заимствовав это слово из романа Джеймса Джойса «Поминки по Финнегану» («Три кварка для мистера Марка!»). Кварки могут иметь заряд +2/3 или –1/3. Существуют также антикварки с зарядами –2/3 или +1/3. Нейтрон, не имеющий электрического заряда, состоит из одного кварка с зарядом +2/3 и дву
х кварков с зарядом –1/3. Протон, обладающий зарядом +1, состоит из двух кварков с зарядами +2/3 и одного кварка с зарядом –1/3. Кварки с одним и тем же зарядом могут отличаться другими свойствами, т.е. существуют несколько типов кварков с одним и тем же зарядом. Различные комбинации кварков позволя
ют описывать все сильно взаимодействующие частицы.
В 1969 г. Г.-М. был удостоен Нобелевской премии по физике «за открытия, связанные с классификацией элементарных частиц и их взаимодействий». Выступая на церемонии вручения премии, Ивар Валлер из Шведской королевской академии наук отметил, что Г.-
М. «на протяжении более чем десятилетия считается ведущим ученым в области теории элементарных частиц». По мнению Валлера, методы, предложенные Г.-М., «принадлежат к числу наиболее мощных средств дальнейших исследований по физике элементарных частиц».
Среди других вкладов Г.-М. в теоретическую фи
зику следует отметить предложенное им совместно с Ричардом П. Фейнманом понятие «токов» слабых взаимодействий и последующее развитие «алгебры токов».
В 1955 г. Г.-М. женился на Дж. Маргарет Доу, которая была археологом. У них родились сын и дочь. Жена Г.-М. умерла в 1981 г. Г.-М. с удовольствием
наблюдает за птицами, любит пешие прогулки, путешествия в места, не тронутые цивилизацией. В 1969 г. Г.-М. помог организовать программу исследования окружающей среды, финансируемую Национальной академией наук США. Интересуется он и исторической лингвистикой.
Г.-М. удостоен премии Дэнни Хейнемана
Американского физического общества (1959), премии по физике Эрнеста Орландо Лоуренса Комиссии по атомной энергии Соединенных Штатов (1966), медали Франклина Франклиновского института (1967) и медали Джона Дж. Карти Национальной академии наук США (1968). Он состоит членом Американской академии наук и