Он был единственным математиком и философом, который считал, что актуальная бесконечность не только существует, но и в полном смысле постижима человеком, и постижение это будет поднимать математиков, а вслед за ними и теологов, все выше - и ближе к Богу. Этой задаче он посвятил жизнь. Ученый твердо верил, что он избран Богом, чтобы совершить великий переворот в науке, и эта его вера поддерживалась мистическими видениями.
Семья Георга Кантора (1845-1918) переехала из России в Германию, когда он еще был ребенком. Именно там он начал изучать математику. Защитив в 1868 г. диссертацию по теории чисел, он получил степень доктора в Берлинском университете. В 27 лет Кантор опубликовал статью, содержавшую общее решение очень сложной математической проблемы - и идеи, выросшие впоследствии в его знаменитую теорию - теорию множеств. В 1878 г. он ввел и сформулировал значительный ряд новых понятий, дал определение множества и первое определение континуума, развил принципы сравнивания множеств. Систематическое изложение принципов своего учения о бесконечности он дал в 1879-1884 гг.
Настойчивое стремление Кантора рассмотреть бесконечность как нечто актуально данное было для того времени большой новостью. Кантор мыслил свою теорию как совершенно новое исчисление бесконечного, "трансфинитную" (то есть "сверхконечную") математику. По его идее, создание такого исчисления должно было произвести переворот не только в математике, но и в метафизике и теологии, которые интересовали Кантора едва ли не больше, чем собственно научные исследования. Он был единственным математиком и философом, который считал, что актуальная бесконечность не только существует, но и в полном смысле постижима человеком, и постижение это будет поднимать математиков, а вслед за ними и теологов, все выше - и ближе к Богу. Этой задаче он посвятил жизнь. Ученый твердо верил, что он избран Богом, чтобы совершить великий переворот в науке, и эта его вера поддерживалась мистическими видениями. Титаническая попытка Георга Кантора, впрочем, закончилась странно: в теории были обнаружены трудно преодолимые парадоксы, ставящие под сомнение и значение любимой идеи Кантора - "лестницы алефов", последовательного ряда трансфинитных чисел. (Эти числа широко известны в принятом им обозначении: в виде буквы алеф - первой буквы еврейского алфавита.)
Неожиданность и своеобразие его точки зрения, несмотря на все преимущества подхода, обусловили резкое неприятие его работ большей частью ученых. Десятилетиями он вел упорную борьбу почти со всеми современниками-философами и математиками, отрицавшими законность построения математики на фундаменте актуально-бесконечного. Некоторые приняли это как вызов, поскольку Кантор предполагал существование множеств или последовательностей чисел, имеющих бесконечно много элементов. Знаменитый математик Пуанкаре назвал теорию трансфинитных чисел "болезнью", от которой математика должна когда-нибудь излечиться. Л. Кронекер - учитель Кантора и один из самых авторитетных математиков Германии - даже нападал на Кантора, называя его "шарлатаном", "ренегатом" и "растлителем молодежи"! Только к 1890 г., когда были получены приложения теории множеств к анализу и геометрии, теория Кантора получила признание в качестве самостоятельного раздела математики.
Важно отметить, что Кантор способствовал созданию профессионального объединения - Немецкого математического общества, которое содействовало развитию математики в Германии. Он считал, что его научная карьера пострадала от предубежденного отношения к его трудам, и надеялся, что независимая организация позволит молодым математикам самостоятельно судить о новых идеях и заняться их разработкой. Он же был инициатором созыва первого Международного математического конгресса в Цюрихе.
Кантор тяжело переживал противоречия своей теории и сложности с ее принятием. С 1884 г. он страдал глубокой депрессией и через несколько лет отошел от научной деятельности. Умер Кантор от сердечной недостаточности в психиатрической лечебнице в Галле.
Кантор доказал существование иерархии бесконечностей, каждая из которых "больше" предшествующей. Его теория трансфинитных множеств, пережив годы сомнений и нападок, в конце концов, выросла в грандиозную революционизирующую силу в математике 20 в. и стала ее краеугольным камнем.