Популярные личности

Гаспар Монж

Французский геометр, основатель начертальной геометрии
На фото Гаспар Монж
Категория:
Дата рождения:
1754-05-10
Место рождения:
Бон Кот-дOр, Франция
Дата смерти:
1818-07-28
Место смерти:
Париж, Франция
Гражданство:
Франция
Читать новости про человека
Биография

Биография

Во время Директории сблизился с Наполеоном, принимал участие в его походе в Египет и основании в Каире Египетского института (1798г.); был возведен в графы.


Монж Гаспар (10.5.1746-28.7.1818)- французский геометр и общественный деятель, Член Парижской Академии Наук (1780г.). Творец начертательной геометрии, один из организаторов Политехнической школы в Париже и ее многолетний директор. Родился в Бон Кот-д'0р. Окончил Школу военных инженеров в Мезьере. С 1768г.-профессор математики, с 1771г.-также профессор физики в этой школе. С 1780г. преподавал гидравлику в Луврской школе (Париж). Занимался математическим анализом, химией, метеорологией, практической механикой. В период Французской буржуазной революции работал в комиссии по установлению новой системы мер и весов, затем был морским министром и организатором национальной обороны. Во время Директории сблизился с Наполеоном, принимал участие в его походе в Египет и основании в Каире Египетского института (1798г.); был возведен в графы. Получил всемирное признание, создав (в 70-е годы) современные методы проекционного черчения и его основу - начертательную геометрию. Главное произведение Монжа по этим вопросам- "Начертательная геометрия"; опубликованная в 1799г. Важные открытия сделал также в дифференциальной геометрии. Первые работы Монжа об уравнениях поверхностей опубликованы в 1770г и 1773г. В 1795г и 1801г изданы работы Монжа о конечных и дифференциальных уравнениях разных поверхностей. В 1804 издана книга "Применение анализа в геометрии". В ней Монж рассматривал цилиндрические и конические поверхности, образуемые движением горизонтальной прямой, проходящей через фиксированную вертикальную прямую, поверхности "каналов", поверхности, в которых линии наибольшего уклона везде образуют постоянный угол с горизонтальной плоскостью; поверхности перенесения и т. д. В качестве приложения к книге Монж дал свою теорию интегрирования уравнений с частными производными 1-го порядка и свое решение задачи о колебании струны. Для каждого из видов поверхностей вывел сначала дифференциальное, потом конечное уравнение. Первый обозначил буквами p и q частные производные от z по x и у, а буквами r, s и t- производные 2-го порядка.



Поделиться: